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Abstract

The flow of liquid and vapor is investigated in trapezoidal and sinusoidal grooves. The effect of variable shear stress
along the interface of the liquid and vapor is studied for both co-current and counter-current flows. Velocity contours
and results for the friction are obtained for both trapezoidal and sinusoidal grooves. An approximate relation that was
previously utilized for the friction for the liquid was modified to obtain an accurate agreement with the results for

trapezoidal and sinusoidal grooves. © 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

Micro-channels with grooves have been utilized in
many cooling applications to enhance heat transfer and
achieve thermal control. To meet the demands of
transferring increasingly larger heat fluxes, studies of the
flow and heat transfer in micro-channels have been
carried out to determine the capability of these systems.
An early work by Ayyaswamy et al. [1] studied the
capillary flow in a triangular groove. The authors
studied two-dimensional, steady laminar flow with a
shear free interface and obtained a solution by using the
Galerkin method. Xu and Carey [2] utilized the results
of Ayyaswamy et al. [1] to analyze the heat transfer in a
microgroove. The influence of vapor and liquid inter-
actions in microgrooves has also been studied. Several
studies have assumed the shear stress at the liquid—vapor
interface to be uniform [3-7]. Ma et al. [8] included the
non-uniform interfacial shear stress by assuming that
the velocity of the liquid is uniform along the interface.
Khrustalev and Faghri [9] investigated the influence of
the vapor and liquid interaction for flow in a rectangular
groove and included in a rigorous manner the local
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variation of the shear stress along the interface of the
liquid and the vapor. The present work studies the flow
of the liquid and vapor in a trapezoidal groove and also
in a sinusoidal groove [6,7,10] and includes the local
variation of the shear stress at the interface. The effect of
the ratio of the vapor to the liquid velocities on the
friction in the liquid region is investigated. Both co-
current and counter-current flows of the liquid and the
vapor are studied.

2. Analysis

Capillary flow of an incompressible Newtonian fluid
is considered for trapezoidal and sinusoidal grooves as
shown in Fig. 1. The velocity of the liquid at the inter-
face is significantly influenced by both the magnitude
and the relative direction between the liquid and vapor
flows and both co-current and counter-current flows are
considered. The procedure of Khrustalev and Faghri [9]
is utilized in the present work which includes the as-
sumptions of laminar fully developed velocity profiles
and constant curvature of the liquid-vapor interface.
The Cartesian coordinate system is used with the z-axis
coincident with the apex of the flow region as shown in
Fig. 1 [1,6,7]. Assuming fully developed flow,
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Nomenclature u dynamic viscosity (Pa s)
¢ angle of groove wall inclined from
A cross-sectional area (m?) vertical line
Dy, hydraulic diameter (m), 44 /Py 0 density (m? kg™
f friction factor, (—dp/dz)Dy/(2pW*) T shear stress (N m~2), u(0w/0n)
H height of channel (m) Subscrints
h height of groove (m) . P - ove base
L half-width of channel (m) oL fen e
! interface length (m) c wetted contact point
n unit vector normal to a surface (m) ; interface P
Py«  wetted perimeter (m) L
- L liquid
p pressure (N m %) max maximum
Re Reynolds number, pwDy,/p N vapor
w groove width (m) P
W axial velocity (m s™!) Superscripts
x,y,z Cartesian coordinates (m). * dimensionless
Greek symbols B average
o contact angle
L
L R
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Fig. 1. Groove geometries and coordinate system: (a) trapezoidal groove; (b) sinusoidal groove.

where w, and w, are the velocities of the liquid and
vapor, respectively, in the axial direction z. The equation
for the conservation of momentum reduces to

*w,  Owy 1 (6_p) 0wy 62WV, 1 (@)
14 v

™ T m\ % > T2 T \%

(2)
The boundary conditions for the liquid are:
wy, =0 on the groove surface, (3)

,u[% =4(pu Owy at the interfacial surface,
on on

(4)

owy
w

o at x = 0; (5)

for Eq. (4), the sign is positive for co-current flow of the
liquid and vapor, and negative for counter-current flow.
Eq. (5) is a symmetry condition. The boundary con-
ditions for the vapor are:

w, =0 on the channel and groove surfaces, (6)
Owy
g;:O at x=0and L, (7)

where Eq. (7) is a symmetry condition. Since the maxi-
mum velocity of the vapor is much larger than that of
the liquid at the interface, the vapor velocity at the in-
terface is approximated to be stationary [3]:

wy, =0 at the interface. (8)
The velocities and coordinates are scaled according

to h* (—dp/dz)/u and h, respectively. Dimensionless
parameters are thus introduced as
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In the liquid region, the dimensionless equations for the

conservation of momentum and the boundary con-
ditions are:

w,

Pw;  *w
-=—1 1
ax*2 ay*Z ’ ( 0)

w, =0 on the groove surface, (11)

ows ow: [(w; w . .
W O (W/ ) ( Ky &) at the interfacial surface,
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(12)
ow; .
e =0 atx =0, (13)

where w, and w, are the average axial velocities of the
liquid and vapor regions, respectively.
In the vapor region, the dimensionless equation for
the conservation of momentum is
2. 2. %
owy  otwi

) +W——17 (14)

and the dimensionless boundary conditions are:

w; =0 at the channel and groove surfaces, (15)
w, =0 at the interfacial surface, (16)
a Sk

6:::0 at x* =0 and L. (17)

The friction factors for both the liquid and the vapor
can be obtained from the following relations [8]

(—dp/dZ)[Dh.é‘) (ﬂWIDhI) _Di (18)

2p,w; wo) o 2w
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where Dy, = 44 /Py, is the hydraulic diameter, and 4 and
P, are the cross-sectional area and the wetted per-
imeter, respectively.
For the trapezoidal groove, the groove wall is defined

by [7]
0 (0<x"<W/h),
o <x*f— wlieong, (R S o
or ¢ <3,
1 (W/h<x*<L/h),

*
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The radius of curvature of the interface is assumed to be
constant and is given by:

b ¢ (% 4% tan ¢) tan(x + ¢)

2
* Wi /h)+(he /h) tan ¢ * n
y 7\/( . cos(a+¢) ) *XZ, OC+(¢)<§,

h
i et e=3,

(22)

where W is the base width of the groove and 4. is the
height of contact point of meniscus [1,6,7].
For the sinusoidal groove, the groove wall is defined

by [6]

o JI[1—cos (™)), 0<x" < W/h,
Y *{21 " W/h<x*<L/h. (23)

The radius of curvature of the interface is assumed to be
constant and is given by

YTl + tan(x + ¢) — cos (ZE)]
" 2
roy (@) e re<n @8

b atg=1

in  which ¢ = arctan[(2W /nh)cosec(nl,/W)] and
W, = (W /n) arccos[l — 2(h./h)].

3. Numerical procedure

The governing equations were solved numerically in
the liquid and vapor regions, using the method of Karki
and Patankar [11]. The governing equations are trans-
formed into the curvilinear coordinate system x = x(&, )
and y = y(&,n) and the equations are discretized using
the central difference scheme [12]. The resulting al-
gebraic equations were solved using a non-uniform grid
system with 71 nodes in the ¢ direction and 25 nodes in
the 5 direction. In the region near the surface and in the
vicinity of the interface, the grids were densely distrib-
uted. Iterations were continued until changes in the ve-
locities were less than 0.1%. It was found that the results
differed by less than 0.01% from a grid system of
142 x 50 nodes. Calculations were also carried out for
the problems studied by Ayyaswamy et al. [1] and by Ma
et al. [8]. Very good agreement was obtained for the
results for the friction factor for both of these studies.

4. Results and discussion
In this work results are obtained for both trapezoidal

and sinusoidal grooves. Results are obtained over the
range 0.5<h./h<1, 2<H/h <6, 0.3<W/h<0.7,



3106 J.-S. Suh et al. | International Journal of Heat and Mass Transfer 44 (2001) 3103-3109

0< /W <1, 1<L/W<6 and 0°< o< 60° Note that
W,/ W refers to the trapezoidal grooves.

The distributions of dimensionless velocity for the
liquid flow in both the trapezoidal and sinusoidal
grooves are shown in Figs. 2(a) and (b) for 4. = 0.7k for
co-flow and for counter-flow. Note that for counter-
flow, near the interface, the negative values of the con-
tours correspond to the liquid flow that is in the same
direction of the vapor flow. Away from the interface, the
liquid velocity is opposite (positive values of the con-
tours) to the vapor flow.

The variation of the shear stress along the interface is
shown in Fig. 3(a) and (b) for trapezoidal and sinusoidal
grooves. The vapor flow is independent of the liquid flow
since the vapor velocity is set equal to zero at the inter-
face (Eq. (6)) and the shear stress at the interface is,
therefore, solely obtained from the vapor flow. Note that
when &, = h, the liquid wets the entire groove. For the
sinusoidal groove, when A. = h, the interface is flat

(vielding a rectangular vapor flow passage with slip sides)
and the shear stress is constant along the interface and
the bottom of the vapor channel. For the trapezoidal
groove, when /. = h, the magnitude of the interfacial
shear stress is a maximum at the top corner of the groove.
For A, < h, however, the shear stress is a maximum at the
centerline for both the trapezoidal and the sinusoidal
grooves. This result differs from the trend presented by
Khrustalev and Faghri [9] for a rectangular groove.
Results for the friction for the vapor region are
shown for three cases in Figs. 4(a) and (b) in terms of the
product (f-Re), for several configurations for the
trapezoidal and the sinusoidal grooves. The friction-
Reynolds number product, (f - Re),, increases mono-
tonically with increasing 4. In the trapezoidal groove,
the product, (f-Re),, has a greater variation with
respect to the wetted contact angle, «, than in the
sinusoidal grooves. The results for the friction for the
trapezoidal grooves can be summarized as follows:

Fig. 2. Contour plots for dimensionless velocities of the liquid in co-flow (left) and counter-flow (right) for W = 0.54 and h, = 0.7h:

(a) trapezoidal groove; (b) sinusoidal groove.
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Fig. 3. The variation of dimensionless shear stress at the interface for W = 0.5k: (a) trapezoidal groove; (b) sinusoidal groove.
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Fig. 4. Friction factor-Reynolds number product for the vapor region for three meniscus contact angles for W = 0.5k and A, = 0.7h:

(a) trapezoidal groove; (b) sinusoidal groove.
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Fig. 5. Friction factor-Reynolds number product for the liquid region for three meniscus contact angles for W = 0.54, h, = 0.7h and

Wy, = 0.5W: (a) trapezoidal groove; (b) sinusoidal groove.
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and for the sinusoidal grooves:

4.1
‘Re), = (22.2 +2.53¢™/% — ——
(f - Re), ( +2.53¢ T+ sin oc)

w2 4223
= —29. 43eme/2h 4 T )
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(26)

Results for the friction for the liquid region are shown in
Figs. 5(a) and (b) for several cases for the product
(f - Re), as a function of the parameter p,w,/u,w, for
trapezoidal and sinusoidal grooves. For co-flow, the
product (f -Re), decreases linearly as u,w,/p,w, in-
creases; but for counter-flow, (f - Re), increases almost

linearly as the magnitude of u,w,/u,w, increases. This
agrees with the trend of Khrustalev and Faghri [9] for
rectangular grooves. For both trapezoidal and sinus-
oidal grooves, for higher values of «, the product
(f - Re), has a larger variation with u,w,/u,w;.

Schneider and DeVos [13] refer to a relation by Di-
Cola [14] which relates (f - Re),, for the condition with
constant shear at the interface, to the friction without
shear at the interface (f - Re),, multiplied by a factor
which contains a constant shear term at the interface
and the groove dimensions. Schneider and DeVos [13]
give approximate relations which are in good agreement
with the result of DiCola [14]: '

(f -Re), = (f - Re)g {1 ,;72 (1- 1.971&)]

with 3 = he/We, (27)

! For completeness, we note that Eq. (27) as presented by
Schneider and Devos [13] is not valid for small values of y.
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and
8y?
(1+7)*((1/3) — (64/7%) tan h(wy/2))
(28)

(f-Re)y =

Note that, for the trapezoidal groove, i, and W, rep-
resent the equivalent wetted depth and wetted half-width
of a rectangular groove.

For the present results, (f - Re),, with variable shear
at the interface, t;, can be obtained from

=k

Ti .
(f -Re),=B-(f - Re), 1—372(1—1.9713 7). E|,
(29)
T he  pwy

= =(f-Re
uwy/he i )V 2Dhy peWy

(30)

for both trapezoidal and sinusoidal grooves. Note that 7
denotes the average value of the variable shear stress at
the interface. The functions B and E for the trapezoidal
grooves are

84 2
B—144-—% (1 _o19,/1- (ﬁ) . (3D
1 +sino w
and
E:71.2+1.1%+1.66<Wb/"’)3 70.45,/%7 1.1a
h w 3
¢ _ R (W /)
+H—hc (1.6 0.77h 1.6e +1.3a)7
(32)
and for the sinusoidal grooves
B= 1.4&&, (33)
1 +sina
and
E=-0.15 +0.94K7 0.13 K70.180(
h VL
h w
¢ 16—04—+0. ) 4
+Hfhc(0 6—-0 h+073o<) (34)

We note that Eq. (29) is in agreement to within 5% of
the results obtained for the full problem for the trap-
ezoidal and the sinusoidal grooves as specified in Egs.

(10)—(17).
5. Conclusions

In this work, liquid and vapor flows have been in-
vestigated in trapezoidal and sinusoidal grooves. Both

co-current and counter-current flows have been studied,
and the effect of variable shear stress along the interface
of the liquid and vapor is included. Correlations of the
friction factors for the vapor and liquid have been ob-
tained for both trapezoidal and sinusoidal grooves. The
results show that the geometric configurations of the
grooves have an important effect on the friction of
the vapor and the liquid. The friction on the liquid is
greatly affected by the ratio of the mean velocities of the
vapor to the liquid.
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